SAFIA

Handbuch zur SAFIA Mykotoxin Messung

Dieses Handbuch beschreibt die Durchführung eines Performance Checks mit SAFIA Check Partikeln sowie die Messung des SAFIA-Assays für Mykotoxine unter Verwendung des Durchflusszytometers CyFlow® Cube 6 V2m und der CyFlow® Robby Autoloading Station, sowie die Datenanalyse mit SAFIA Score 1.1.

Version 2.2

Inhalt

1	Alle	gemeine Informationen zur Mykotoxinmessung mit SAFIA	4
	1.1 1.2 1.3 1.4	Mykotoxine Verfügbare Kits Prinzip des SAFIA-Assay Durchführung des SAFIA-Assay	4 4 4 5
2	Pro	odukthinweise	6
	2.1 2.2	Kitinhalt Zusätzlich benötigte Reagenzien und Materialien	6 7
	2.2. 2.2. 2.2.	2 Reagenzien	7 7 7
	2.32.42.5	Lagerung und Verwendung des Kits Sicherheitshinweise Ablage der Daten	8 8 9
3 4		rten des Cube 6 rchführung eines <i>Performance Checks</i>	10 12
	4.3	Erläuterung des <i>Performance Checks</i> Vorbereitung Durchführung Auswertung eines Performance Checks mit SAFIA Check Anlegen einer neuen Messreihe mit neuer LOT-Nummer	12 13 13 14 16
5 6		nen des SAFIA Assays in SAFIA Score obenvorbereitung	17 23
		Puffervorbereitung Anleitung der Probenvorbereitung	23 24
7		Cchführung des SAFIA Assays Vorbereitung Durchführung des Assays Auslesen mit dem Cyflow® Cube 6 Durchflusszytometer Auswertung des Assays mithilfe von SAFIA Score	28 28 28 31 37
8 9 10	Hin	nigen und Herunterfahren des Cube 6 weise für besondere Matrices ufige Fehler und Trouble Shooting	41 43 44
	10.1 10.2 10.3 10.4 10.5 10.6	Manueller Reinigungszyklus Beim Performance Check oder bei Messung werden keine Partikel gemessen Partikelpopulationen liegen nicht in Gates Nach Abschluss der Messung öffnet sich FCS Express nicht automatisch mit den richtigen Daten FCS Express Fehlermeldung Die Kontrolle ist Positiv	44 44 45 46 49

SAFIA

10.7 Die Kalibrationskurve erfüllt nicht die Richtwerte	49
10.7.1 Relativer dynamischer Bereich, IC50, <i>p</i> -Werte 10.7.2 R Square <0.990	49 49
10.8 SAFIA Score	49
11 Anhang	50
11.1 Checkliste 11.2 Glossar	50 52
12 Kontakt	55
SAFIA Technologies Support Sysmex Support	55 55

1 Allgemeine Informationen zur Mykotoxinmessung mit SAFIA

1.1 Mykotoxine

Mykotoxine sind sekundäre Stoffwechselprodukte von Schimmelpilzen oder Mutterkornpilzen, die hauptsächlich zu den Arten Aspergillus, Alternaria, Fusarium, Penicillium und Claviceps gehören. Sie können bei Verzehr akute Vergiftungen, chronische Krankheiten und sogar Krebs auslösen. Mykotoxine stellen eines der größten Kontaminationsrisiken für die Lebensmittelindustrie dar und werden daher von der EU stark reguliert (siehe Verordnung (EG) Nr. 915/2023). Die regulierten Mykotoxine, die mit den SAFIA Kits gemessen werden können, sind Ochratoxin A (OTA), Fumonisine (FUM, Isomere FB1, FB2), Deoxynivalenol (Vomitoxin, DON), Zearalenon (ZEN) und Aflatoxine (AFL, Isomere AFB1, AFB2, AFG1, AFG2) und T2 Toxin (T2). Die zulässigen Höchstgehalte sind abhängig von der Art des Lebensmittels.

1.2 Verfügbare Kits

Tabelle 1. Übersicht der verfügbaren SAFIA Kits mit den darin enthaltenden Parametern

Bestellnummer	Kit	Parameter
FIE1L012	Feld Kit	FUM, DON, ZEN, T-2 + Control
STO1L001	Lager Kit	OTA, AFL + Control
SCR1L013	Screening Kit	OTA, AFL, FUM, DON, ZEN, T-2 + Control

1.3 Prinzip des SAFIA-Assay

Der Suspensionarray Fluoreszenzimmunoassay, kurz SAFIA, ist ein partikelbasierter Multiplexing-Schnelltest. Für das Multiplexing werden codierte Mikropartikel verwendet. Die Kodierung beruht auf unterschiedlichen Mengen eines rot fluoreszierenden Farbstoffs, der in die Mikropartikel eingebaut ist. Jeder Code, dargestellt durch eine bestimmte Farbstoffkonzentration, wird verwendet, um einen entsprechenden gemessenen Analyten zu codieren. Das gesamte Messprinzip für den Nachweis von Mykotoxinen basiert auf indirekt kompetitiven Immunoassays. Die Mykotoxine sind chemisch auf der Oberfläche der Partikel immobilisiert. Zu den Partikeln werden Probe oder Standard, eine Mischung Mykotoxin-spezifischer Antikörper und Fluorophormarkierte Antikörper gegeben. Die spezifischen Antikörper binden kompetitiv entweder das jeweilige immobilisierte Mykotoxin oder das in der Probe vorhandene Mykotoxin. Gebundene Antikörper werden mit Farbstoff (grün fluoreszierend) markierten Antikörpern gefärbt, um ein messbares Signal zu erzeugen. Aufgrund der kompetitiven Reaktion ist die Konzentration des Mykotoxins umgekehrt proportional zum Signal und kann über eine Kalibrationskurve bestimmt werden.

Das Auslesen der zur Kodierung verwendeten roten Fluoreszenz und der zur Quantifizierung verwendeten grünen Fluoreszenz erfolgt mithilfe eines Durchflusszytometers. Innerhalb des Durchflusszytometers werden die SAFIA-Mikropartikel hydrodynamisch separiert und die Fluoreszenz wird unabhängig für jeden Partikel mit einem blauen und einem roten Laser/Detektor-System gemessen.

Im Vergleich zu klassischen Immunoassays wie ELISA ist SAFIA ein Mix-and-Read-Immunoassay. Waschschritte, die verwendet werden, um hohe Signalhintergründe, Matrixinterferenzen zu vermeiden oder Signalanstieg zu stoppen, sind nicht notwendig.

Zusätzlich zu den Mykotoxinen wird im SAFIA eine Kontrollmessung ("Control") mit durchgeführt. Diese zeigt an, ob Matrixeffekte den Test bei der Messung stören bzw., ob er richtig durchgeführt wurde. Die Interpretation findet dazu automatisch in SAFIA Score statt, siehe Abschnitt 7.4.

1.4 Durchführung des SAFIA-Assay

Dieses Handbuch beschreibt die Durchführung von Messungen im Mikrotiterplatten (MTP)-Format mit dem *CyFlow® Cube 6 V2m* mit *CyFlow® Robby Autoloading Station* (im Nachfolgenden "Cube 6") genannt.

Ergänzende Hinweise zum Bedienen des Cube 6 können den Anleitungen des Geräts entnommen werden. Die Benutzung ist ausschließlich durch eingewiesene und geschulte Personen vorzunehmen. Bitte beachten Sie die Sicherheitshinweise.

Die Durchführung des Assays untergliedert sich in folgende Schritte:

- 1. Probenvorbereitung (Extraktion, ggf. Entfärben, Verdünnen)
- 2. <u>Durchführung des SAFIA Assays</u> (Mischen der Reagenzien)
- 3. Auslesen mit dem Cyflow® Cube 6 Durchflusszytometer
- 4. Auswertung des Assays mithilfe von SAFIA Score 1.1

Abbildung 1. Analysenablauf

2 Produkthinweise

2.1 Kitinhalt

Tabelle 2. Kitinhalt

Bestandteil	Anzahl und Inhalt	Status	Information
96-Well Mikrotiterplatte	1	Gebrauchsfertig	
Kalibrationsstandards (Calibration Standards)	8 x 0,5 mL	Gebrauchsfertig	Beschriftet mit "Kal-1" bis "Kal-8"
Probenpuffer (Sample Buffer)	1 x 15 mL	Konzentrat	10-fach Konzentrat
Primäre Antikörper (Primary antibodies)	1 x 5 mL	Gebrauchsfertig	Beschriftet mit "AK 1"
Sekundäre Antikörper (Secondary antibodies)	2 x 5 mL	Gebrauchsfertig	Beschriftet mit "AK 2"
Partikel Stocklösung (Particle Stock solution)	1 x 45 µL	Konzentrat	Im Vial mit Insert
Partikel-Puffer (Particle Buffer)	1 x 1,5 mL	Gebrauchsfertig	
Fixierlösung (Fixation Solution)	1 x 10 mL	Gebrauchsfertig	
SAFIA PVPP-Adsorber		Gebrauchsfertig	Optional erhältlich Bestellnummer: SPVA-007
SAFIA PA-Adsorber		Gebrauchsfertig	Optional erhältlich . Bestellnummer : SPAA-008

Tabelle 3. Konzentrationen der einzelnen Kalibrationsstandards

Standard	c(OTA) µg L ⁻¹	c(DON) µg L ⁻¹	c(ZEN) µg L-1	c(FUM) µg L ⁻¹	c(AFL) µg L ⁻¹	с(Т2) µg L ⁻¹	c(KON) µg L ⁻¹
KAL-1	1000	10000	1000	10000	1500	5000	1000
KAL-2	100	1000	100	1000	150	500	100
KAL-3	10	100	10	100	15	50	10
KAL-4	1	10	1	10	1,5	5	1
KAL-5	0,3	3	0,3	3	0,45	1,5	0,3
KAL-6	0,1	1	0,1	1	0,15	0,5	0,1
KAL-7	0,01	0,1	0,01	0,1	0,015	0,05	0,01
KAL-8	0,001	0,01	0,001	0,01	0,0015	0,005	0,001

2.2 Zusätzlich benötigte Reagenzien und Materialien

Spezifikationen zu den Materialien können Sie der Checkliste im Anhang entnehmen.

2.2.1 Geräte

- Analysenwaage
- Durchflusszytometer CyFlow® Cube 6 in der Variante mit einem Laser (488 nm, blau) mit CyFlow®
- Ein- und Mehrkanalmikropipetten
- Glasgefäß, verschließbar
- Mikrotiterplattenschüttler
- Multi-Kanal-Reservoir
- Robby Autoloading Station
- Röhrchen für Probeneinwaage und Extraktion
- Schüttler für Gefäße
- Zentrifuge

2.2.2 Reagenzien

- Ethanol 99 % vergällt mit MEK, IPA und Bitrex® (min. 99,8 %), für Analyse auf 70 %(vol/vol) verdünnen
- deionisiertes Wasser

2.2.3 Materialien für den Betrieb des Cube 6

- Sheath Fluid, Bestellnummer: 04-4007_R
- Cleaning Solution, Bestellnummer: 04-4009_R
- Decontamination Solution, Bestellnummer: 04-4010_R
- Hypochlorite Solution, Bestellnummer: 04-4012_R

- 96-Well Mikrotiterplatte, Bestellnummer 04-2020
- Probenröhrchen (Tubes) für Sysmex Cube 6 Durchflusszytometer, Bestellnummer: 04-2000
- CyFlow Software

Optional: Material für den SAFIA Performance Check:

- SAFIA Check Particles, Bestellnummer: SCP-1L-010
- SAFIA Check Software, Bestellnummer: SCSO-009
 Alternativ
- SAFIA Check Starter Kit (Partikel und Software), Bestellnummer: SCSK-1L-011

2.3 Lagerung und Verwendung des Kits

Das Kit ist im Kühlschrank bei 2–8 °C zu lagern und darf keinesfalls eingefroren werden (z. B. bei –20 °C). Vor der Verwendung sind alle Komponenten auf Raumtemperatur zu bringen, direkte Lichteinwirkung ist zu vermeiden. Nach Ablauf des Verfallsdatums kann keine Garantie übernommen werden. Einzelne Reagenzien des Kits dürfen nicht mit Reagenzien aus anderen Kits ausgetauscht werden, auch dann nicht, wenn die gleiche Chargennummer aufgedruckt ist. Die Verwendung des Kits ist ausschließlich durch geschultes Personal zulässig, wobei die Gebrauchsanweisung strikt einzuhalten ist. Nach Öffnung empfehlen wir das Kit innerhalb von einem Monat aufzubrauchen. Der verdünnte Probenpuffer ist bei Raumtemperatur zu lagern.

2.4 Sicherheitshinweise

- Die Kitbestandteile *Calibration Standards* und *Fixation solution* enthalten Mykotoxine in geringen Mengen und sind entsprechend mit Vorsicht zu behandeln.
- Die Kits enthalten gesundheitsgefährdende Substanzen. Sicherheitshinweise und Vorsichtsmaßnahmen zu den enthaltenen Komponenten entnehmen Sie bitte den Sicherheitsdatenblättern (SDS).
- Alle Reagenzien und Materialien müssen nach Gebrauch sachgerecht und eigenverantwortlich entsorgt werden. Beachten Sie bei der Entsorgung die jeweils national geltenden Vorschriften und ziehen hier ggf. die Sicherheitsdatenblätter hinzu.
 - Wir empfehlen die Dekontamination von Glas- oder anderen Geräten, die mit toxinhaltigen Lösungen in Kontakt gekommen sind, entweder mit alkalischem Schnellreiniger oder einer 10 %igen Hypochlorit-Lösung vorzunehmen.

2.5 Ablage der Daten

Bei der Installation des Systems werden einige Dateien und Ordner angelegt. Verändern Sie diese nicht, da sonst die automatische Verarbeitung der Daten gestört wird. In Tabelle 4 sehen Sie eine Übersicht über die Dateien und wo sie gespeichert sind. Nur die mit *-markierten Dateien sind jene, die Sie manuell in CyView bzw. SAFIA Score auswählen müssen. Heften Sie für ein komfortables Arbeiten die Unterordner *Export-Files* an den Schnellzugriff an.

Tabelle 4 Übersicht der Dateipfade und Datenablage des SAFIA Systems

C:\ProgramData\PartecGmbH\Cube_18\config\Mycotoxins					
Datei(en)			Datei-Namen		
Configuratio	n-File zur Durchführun	Mycotoxins- SCR_A_Robby.cv85 ¹ *			
Configuratio	n-File zur Durchführun	g einer Reinigung	Cleaning-MTP.cv85*		
C:\Program[Data\PartecGmbH\Cub	e_18\templates\Quality Control			
Datei(en)			Datei-Namen		
•	Layout Template (wird a eitung geladen)	automatisch in FCS Express zur	Calc_Mycotoxins-SCR_A		
C:\Programi	Data\PartecGmbH\Cub	oe_18\data\cyflow\			
Datei(en)			Datei-Namen		
. fcs-Dateier und ID)	n der Messungen (werde	n hier automatisch abgespeichert mit Datum	Datum_Uhrzeit_Tray- ID_Letzte Well ID.fcs		
C:\User\cyfl	ow\Documents\				
Ordner	Unterordner	Datei(en)	Datei-Format		
SAFIA- Check	Export-Files	Rohdaten für SAFIA Score (werden hier automatisch über FCS Express abgelegt)	.CSV*		
	Reports	Reports des Performance Checks (werden hier über SAFIA Check abgelegt)	.pdf		
SAFIA- Mycotoxins	Export-Files	Rohdaten für SAFIA Score (werden hier automatisch über FCS Express abgelegt)	.CSV*		
	Optional:				
	SAFIA-Files	SAFIA Score-Dateien	.sdf		
	FCS Express Layouts	Layouts einzelner Messungen	.fey		

¹ Bitte beachten Sie, dass auf jedem Gerät einmal das originale Configuration-File ("SCR_A_Robby.cv85") und ein auf Ihr Gerät angepasstes Configuration-File hinterlegt sind. Verwenden Sie zur Messung stets das angepasste Configuration-File, das dieses die korrekt eingestellten Gain-Werte der Detektoren ihres Geräts enthält.

3 Starten des Cube 6

- 1. Vor dem Start sollte die Flasche Waste vollständig entleert werden.
- 2. Die Flasche Sheath sollte ca. zu 80 % mit Sheath Fluid aufgefüllt werden.
- 3. Schalten Sie das Gerät ein (Kleiner Schwarzer Knopf auf dem Gerät).
- 4. Die Messoftware CyView™ öffnet sich automatisch. Warten Sie, bis diese komplett geladen ist und das Gerät einsatzbereit ist.
- 5. Loggen Sie sich mit Ihrem Account in der Software ein.
- 6. Öffnen Sie das Configuration File (Mycotoxins-SCR_A_Robby.cv85 ²) für die Messung über *CFG Upload* 📆 .
- 7. Klicken Sie dazu auf Prime in der Hauptleiste und dann auf Start (siehe Abbildung 2) und folgen Sie den Anweisungen durch das Prime-Programm (siehe Abbildung 3).

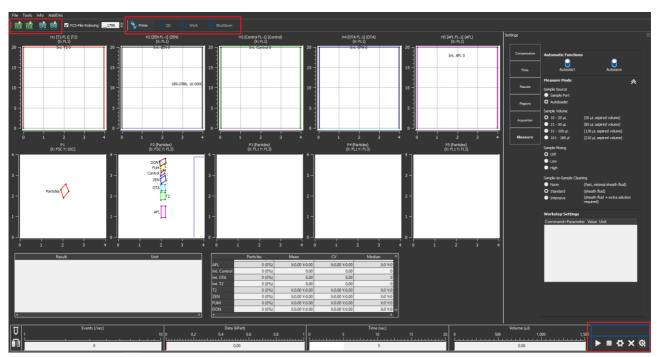


Abbildung 2. Lage des *Prime* Programms, der *Einstellungen* und des *Start* Buttons

² Bitte beachten Sie, dass auf jedem Gerät einmal das originale Configuration-File ("SCR_A_Robby.cv85") und ein auf Ihr Gerät angepasstes Configuration-File hinterlegt sind. Verwenden Sie zur Messung stets das angepasste Configuration-File, das dieses die korrekt eingestellten Gain-Werte der Detektoren ihres Geräts enthält.

Abbildung 3. Schritte des Prime Programms

4 Durchführung eines Performance Checks

4.1 Erläuterung des Performance Checks

Wir empfehlen die messtägliche Überprüfung der Geräteperformance des Cube 6 mit den SAFIA Performance Check Partikeln und die Auswertung mithilfe von SAFIA Check. Wurde der Performance Check am Tag bereits durchgeführt, fahren Sie mit Abschnitt 5 fort.

Mithilfe des SAFIA Performance Checks wird die korrekte Funktion des Cube 6 für die Messung von SAFIA Assays überprüft. Dazu wird eine Mischung von SAFIA Performance Check Partikeln gemessen. Die Messung muss dabei vorher definierte Intensitäts-, Partikelzählraten (Count), Variationskoeffizienten (%CV) und Signalzu-Rausch (S/N)-Verhältnisse in den entsprechende Detektoren FSC, SSC, FL-1 und FL-3 aufweisen, damit der SAFIA Performance Check bestanden wird. Bei einer erfolgreichen Messung werden 20.000 Partikel gemessen, welche im Streuplot FSC/SSC als Population in dem Gate "Partikel" auftauchen (siehe Abbildung 4 A). In Streuplot FSC/FL-3 sind 5 Gates eingezeichnet, in denen jeweils 1 oder 2 Populationen sichtbar werden (siehe Abbildung 4 B). Die Populationen aus diesen 5 Gates sind in 5 Histogrammen in FL-1 aufgetrennt, sodass jeweils eindeutig zwei Peaks zwei Populationen abbilden (siehe Abbildung 4 C).

Abbildung 4. Übersicht SAFIA Check. FSC/SSC-Streuplot in A, FSC/FL-3-Streuplot in B sowie FL-1-Histogramm in C

Das S/N-Verhältnis wird in SAFIA Check errechnet aus dem Quotienten der Intensität im FL-1 (MAX) und FL-1 (MIN) für jede Population im FL-1. Mit dem SAFIA Performance Check können somit kontrolliert werden:

- die korrekte Funktionsweise des fluidischen Systems
- der Status des Lasers
- die korrekte Funktionsweise des FL-3 Detektors (Codierung der SAFIA Assay Partikel)
- die korrekte Funktionsweise des FL-1 Detektors (dynamischer Bereich der SAFIA Assays)

4.2 Vorbereitung

Die SAFIA Check Partikel müssen vor dem Durchführen der Messung verdünnt werden.

- 1. Schütteln Sie die Flasche mit den SAFIA Check Partikeln mindestens 15 Sekunden kräftig.
- 2. Entnehmen Sie 10 μL der Partikelsuspension und fügen Sie sie zu 10 mL Sheath Fluid hinzu.
- 3. Schütteln Sie Partikel nochmals für mindestens 15 Sekunden.
- 4. Die Partikel sind nun fertig zum Messen. Die fertige Lösung kann weitere 5 Tage verwendet werden, danach muss sie verworfen werden. Sie ist im Kühlschrank bei 2-8 °C zu lagern.

4.3 Durchführung

Klicken Sie auf QC Cube QC Cube in der Hauptleiste und überprüfen Sie unter Einstellungen ♀
 Measure, ob der Sample Port als Sample Source ausgewählt ist und die Einstellungen mit denen in Abbildung 5 übereinstimmen.

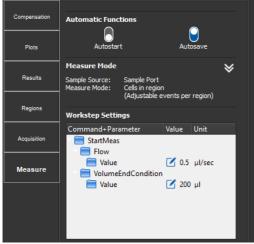
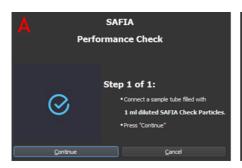



Abbildung 5. Einstellungen der Messung

2. Klicken Sie auf *Start* und folgen Sie den Anweisungen durch das QC-Programm (siehe Abbildung 6). Sollten keine Partikel erfasst werden, befolgen Sie die Hinweise in Abschnitt 10.2.

Abbildung 6. Ansicht der Anweisungen des QC-Programm Ablaufs

3. Wenn die Messung beendet ist, öffnet sich automatisch das Programm FCS Express. Auf der linken Seite sind die oben beschriebenen Plots und Histogramme zu sehen, auf der rechten Seite in Datalist ist die verwendete .fcs-Datei sichtbar (siehe Abbildung 7). Wenn nicht automatisch die richtigen Daten geladen werden, beachten Sie die Hinweise in Abschnitt 10.4.

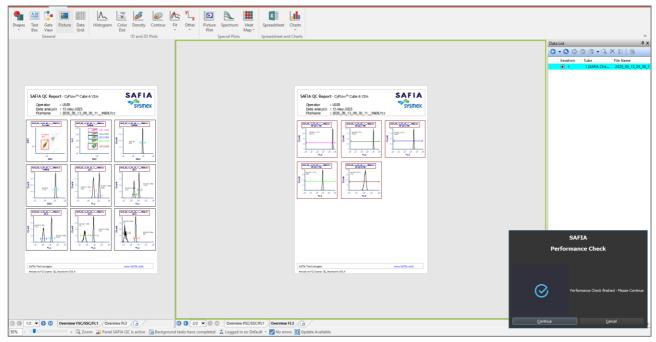


Abbildung 7. Darstellung der .fcs-Daten in FCS Express

- 4. Überprüfen Sie in *FCS Express*, ob die Populationen in den vorgesehen Gats liegen und passen sie bei Bedarf leicht an. Klicken Sie dazu das entsprechende Gate an und verschieben es an die gewünschte Position. Klicken Sie unter dem Reiter *Batch & Export* auf *Run* (siehe Abbildung 8).
- 5. Es öffnet und schließt sich kurz ein Fenster, welches Sie ignorieren können. Nun wird die .fcs-Datei eine in .csv- Datei konvertiert, welche mit SAFIA Check ausgewertet werden kann. Die .csv-Datei wird automatisch im Ordner SAFIA Check → Export-Files gespeichert.

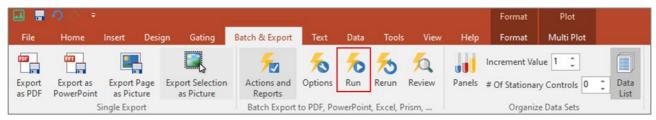


Abbildung 8. Ansicht des Reiters Batch & Export in FCS Express sowie Lage von Run

6. Führen Sie in CyView das Spülprogramm Performance Check Clean aus. Nach Abschluss der Messung öffnet sich hierzu automatisch ein Fenster, das Sie durch den Vorgang führt (siehe Abbildung 6 C). Der Reinigungsvorgang startet automatisch und entfernt eventuell verbliebene Partikel aus dem Gerät.

4.4 Auswertung eines Performance Checks mit SAFIA Check

- 1. Öffnen Sie SAFIA Check und klicken Sie auf den Button Add New Performence Check
- 2. Zum Hinzufügen der .csv-Datei klicken Sie in dem sich öffnenden Fenster auf *Load CSV-File*. Wählen Sie die entsprechende Datei aus dem Ordner *SAFIA Check → Export-Files* aus.

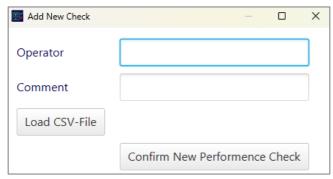


Abbildung 9. Ansicht des Fensters Add New Check mit den Buttons Load CSV-File und Confirm New Performance Check sowie den Freitextfeldern Operator und Comment

Sie haben die Möglichkeit den Namen der durchführenden Person einzutragen, sowie einen Kommentar zu speichern, die bei der Interpretation hilfreich sein können, bspw. wenn Wartungen am Gerät vorgenommen wurden.

- 3. Durch Klicken des Button *Confirm New Performance Check* wird die .csv-Datei in SAFIA Check geladen und der Performance Check wird ausgeführt.
 - Ein nachträgliches Ändern oder Löschen des Performance Checks ist dann nicht mehr möglich!

 Jede .fcs Datei kann nur einmal mit dem SAFIA Performance Check ausgewertet werden.
- 4. Das Ergebnis des Performance Checks wird automatisch als .pdf-Datei im Ordner SAFIA Check → Reports gespeichert.
 - Schließen Sie *FCS Express* nach Abschluss, ohne zu speichern, damit die Vorlage nicht überschrieben wird. Wenn Sie eine Anpassung der Gate-Positionen speichern möchten, müssen Sie die .fcs-Datei zuvor aus der Datenliste entfernen.

4.5 Anlegen einer neuen Messreihe mit neuer LOT-Nummer

Wenn Sie eine neue Charge SAFIA Check Partikel erhalten haben oder z. B. nach einer Wartung eine neue Messreihe starten wollen, müssen Sie ein neues LOT-File erzeugen.

1. Klicken Sie dazu auf den Button New LOT . Tragen Sie in das sich öffnende Fenster die LOT-ID und die aufgelisteten Parameter ein (siehe Abbildung 10). Die Parameter werden mit den SAFIA Check Partikeln mitgeliefert. Sie dienen als Vergleichsgrößen (Benchmark) für jeden Performance Check.

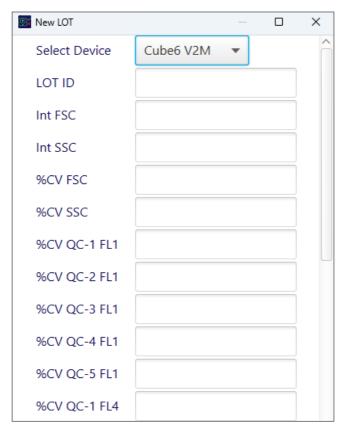


Abbildung 10. Ansicht des Fensters New LOT

2. Klicken Sie auf den Button Add LOT File.

Sollten bei der ersten Messung Ihrer SAFIA Check Partikel die gemessenen Werte von den Benchmarkwerten abweichen, kann es sein, dass die Gain-Werte der Detektoren nachjustiert werden müssen. Dies kann auch nach einer Gerätewartung der Fall sein. Kontaktieren Sie hierzu den Sysmex Support.

5 Planen des SAFIA Assays in SAFIA Score

- Stellen Sie sicher, dass jede Platte (Well A1 bis H12) mindestens eine Acht-Punkte-Kalibrierkurve enthält! Diese sollte in Doppelbestimmung ausgeführt werden. Andernfalls ist die Auswertung des Tests mit SAFIA Score nicht möglich.
- Benutzen Sie ausschließlich die mitgelieferte, schwarze 96-Well Mikrotiterplatte zur Durchführung des Assays.
- 1. Öffnen Sie SAFIA Score.

In der Menüleiste finden Sie die Reiter *File* (Laden, Speichern, Editieren von Dateien und Beenden der Software), *Export* (Erstellen eines Reports) und *Raw Data* (Anzeigen der Daten aus der .csv-Datei). Die Software gliedert sich in die Arbeitsbereiche *Start, Samples and Calibrations, Plate Layout, Calibration Curves, Results* und ggf. *Raw Data*. Diese Reiter können durch Anklicken erreicht werden. Die Arbeitsbereiche *Calibration Curves, Results, References* und *Raw Data* sind erst nach Einlesen der .csv-Datei und nach Anklicken des Buttons *Calculate* im Arbeitsbereich *Plate Layout* freigeschaltet.

2. Starte Sie eine neue Analyse im Reiter Start über den grünen Button + New Analysis (siehe Abbildung 11).

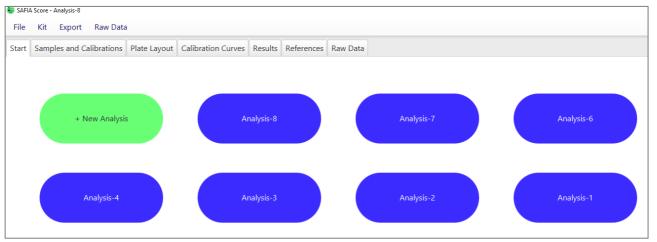


Abbildung 11. Ansicht des Startbereichs von SAFIA Score

Sie können auch eine ältere Analyse öffnen. Klicken Sie dazu im Startbereich auf den blauen Button einer älteren Analyse. Alternativ können Sie ein SAFIA Data File (.sdf-Datei) durch Doppelklick öffnen oder unter File \rightarrow Load.

3. Wählen Sie in dem sich öffnenden Fenster im Dropdown-Menü das entsprechende Kit aus. Geben Sie eine Analysis-ID ein und klicken Sie auf Start Analysis (siehe Abbildung 12).

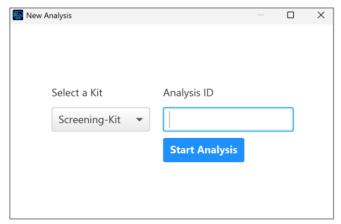


Abbildung 12. Ansicht des Fensters New Analysis

Das Vergeben einer *Analysis-ID* erleichtert die Verknüpfung von .fcs, .csv und .sdf Daten. Sie kann im Menü unter *File/Edit Analysis ID* geändert werden.

4. Gehen Sie zum Arbeitsbereich Sample and Calibration. Hier befinden sich drei Tabellen, die sich über die entsprechenden Buttons ein- und ausblenden lassen. In der Calibration Table finden Sie vorausgefüllt die Konzentration der einzelnen Standards, die mit dem Kit mitgeliefert werden. Sie haben die Möglichkeit diese nach Bedarf zu editieren, z. B. Ändern der Konzentration, Löschen und Hinzufügen eines Standards. Außerdem kann über die Spalte Replicates festgelegt werden, wie oft ein Standard gemessen werden soll, siehe Abbildung 13.

Ändern Sie diese Tabelle nicht, wenn Sie planen alle Standards wie von uns geliefert zu verwenden. Legen Sie lediglich die Anzahl der Wiederholungsmessungen fest.

Wir empfehlen jeden Standard oder jede Probe mindestens zweimal zu messen; unerfahrene Personen sollten jeden Standard/jede Probe dreimal messen.

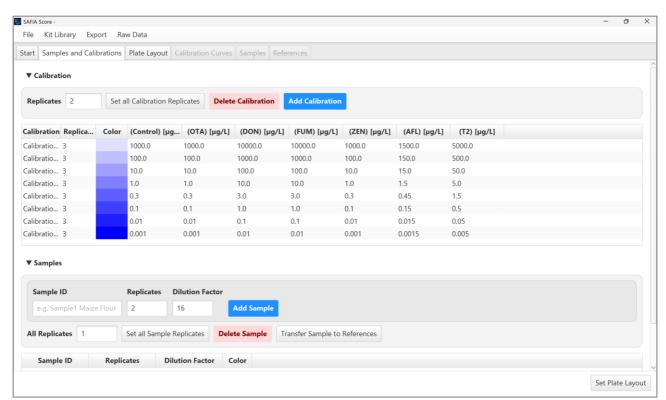


Abbildung 13. Übersicht der Funktionen des Arbeitsbereichs Samples and Calibration

5. Tragen Sie nun Ihre Proben in die *Sample Table* ein. Vergeben Sie für jede Probe eine eineindeutige *Sample ID* (Probenbezeichnung) und legen Sie über das *Replicates* Fenster fest, wie oft eine Probe gemessen werden soll. Die Sample ID kann durch Doppelklick in die entsprechende Zelle geändert, jedoch niemals doppelt vergeben werden.

Die Sample-ID kann entweder mit einem Barcodescanner in die Zwischenablage übernommen und in SAFIA Score eingefügt oder aus einem Tabellenkalkulationsprogramm herauskopiert und eingefügt werden. Achten Sie darauf, dass beim Einfügen nur die betreffende Zeile blau markiert ist (einfacher Klick). Durch einen Doppelklick auf eine Zelle der Spalte *Sample ID* können Sie den Namen einer einzelnen Sample-ID eingeben oder ändern.

Abbildung 14. Einfügen der Sample ID's aus einem Tabellenkalkulationsprogramm

6. Geben Sie den Verdünnungsfaktor der Probe unter *Dilution* ein. Klicken Sie anschließend auf *Add Sample* um die Probe zur Tabelle hinzuzufügen. Die Werte in den Spalten *Replicates* und *Dilution* können auch später noch editiert werden. Die vergebene Farbe der Probe hilft im nächsten Schritt beim Erstellen des Plattenlayouts.

Den Verdünnungsfaktor können Sie <u>Abschnitt 6</u> entnehmen. Für das SAFIA Mykotoxin Kit beträgt er nach der Standard-Prozedur "16", für Flüssige Proben "8" und für Kräuter und Gewürze "32". Wenn Sie Proben in mehreren Verdünnungsstufen messen wollen, müssen Sie für jede unterschiedlich verdünnte Probe eine eigene *Sample ID* angeben.

7. Optional: Sie k\u00fcnnen in der Reference Table Proben mit Referenzkonzentration eintragen, analog zur Sample Table (z. B. Referenzmaterialien oder Blank-Messung).
Nach dem Ende der Analyse ermittelt SAFIA Score automatisch die Wiederfindungsrate der Referenzproben. Diese finden Sie im Arbeitsbereich References. Mithilfe des Buttons Transfer Sample to References k\u00f6nnen Sie auch Referenzproben, die versehentlich in die Sample Tabelle eingetragen wurden, zur References Table hinzuf\u00fcgen.

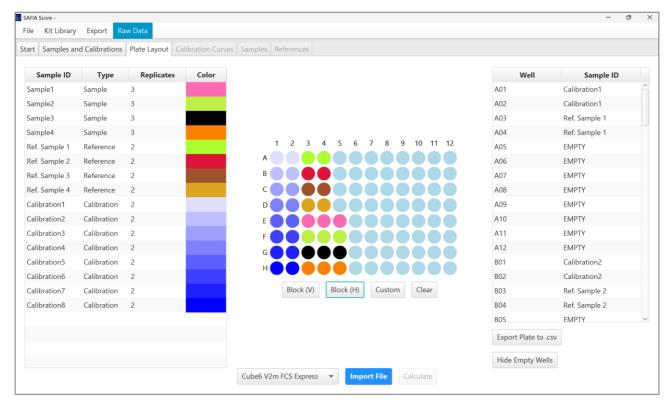
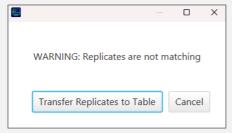


Abbildung 15. Übersicht der Funktionen im Arbeitsbereich Plate Layout


8. Gehen Sie zum Arbeitsbereich *Plate Layout* um eine Zuordnung der Proben und Standards zu den Kavitäten der Mikrotiterplatte vorzunehmen. Die Kavitäten haben einen alphanumerischen Code (A1, B1, C1

usw. bis H12) (siehe Abbildung 15). Die Zuordnung kann automatisch über die Buttons *Block (V)* oder *Block (H)* erfolgen. Dabei werden die Replikate der Proben und Referenzproben entweder vertikal (V) oder horizontal (H) angeordnet. Die Replikate der Kalibrationsstandards werden grundsätzlich horizontal auf der Mikrotiterplatte platziert. Mithilfe des Buttons *Clear* können sie alle Eingaben löschen.

9. Das Plattenlayout kann auch manuell mithilfe des Buttons *Custom* erstellt werden. Dadurch öffnet sich ein separates Fenster (siehe Abbildung 16). In der Tabelle auf der linken Seite wählen Sie die gewünschte Probe aus und ordnen dieser durch Klicken ein einzelnes Well oder durch Klicken und Ziehen mehrere Wells zu. Falsch zugewiesene Proben können in gleicher Weise mit der Aktivierung des Buttons *EMPTY* in gleicher Weise wieder entfernt werden. Alternativ lassen sich alle Replikate einer Probe per Drag-and-Drop auf die Platte ziehen; diese werden dabei automatisch horizontal angeordnet. In der Spalte *Remaining* wird die Anzahl der Replikate angezeigt, die noch nicht auf der Platte platziert wurden. Werden einer Probe mehr Kavitäten zugeordnet als ursprünglich unter *Replicates* angegeben, erscheint dort eine negative Zahl.

Es ist essenziell, dass die angegebenen Wiederholungsmessungen der Standards und Proben aus dem Arbeitsbereich Samples und Calibration mit den Replikaten im Arbeitsbereich Plate Layout übereinstimmen. Sollte dies nach der Erstellung des Plate Layouts mithilfe der Funktion Custom nicht der Fall sein wird automatisch folgende Warnung angezeigt: "WARNING: Replicates are not matching".

Sie haben nun die Möglichkeit entweder den Vorgang abzubrechen und das *Plate Layout* entsprechend zu ändern (Button *Cancel)*, oder die Wiederholungsmessungen gleich in die entsprechende Tabelle unter *Sample and Calibration* eintragen zu lassen (Button *Transfer Replicates to Table*).

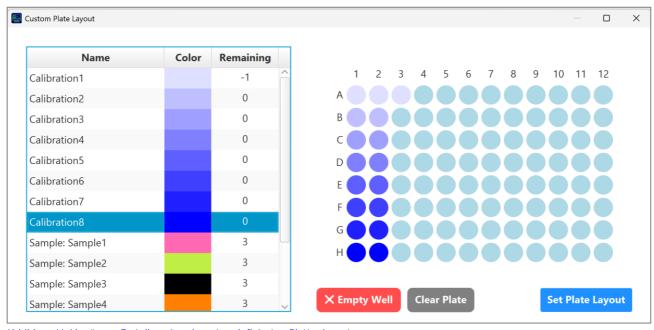


Abbildung 16. Menü zum Erstellen eines benutzerdefinierten Plattenlayouts

SAFIA

Über den Button *Export Plate Table* können Sie das Plate Layout in eine .csvDatei (.xlsx) exportieren, diese können Sie z. B. mit einem Tabellenkalkulationsprogramm öffnen.

- 10. Speichern Sie das *SAFIA Data File* (.sdf) ab, um die Analyse später fortzusetzen. Dies ist möglich unter dem Menü *File* → *Save As*.
- 11. Die Vorbereitung des Assays in *SAFIA Score* ist nun abgeschlossen. Sie können das erstellte *Plate Layout* nun im Assay verwenden und die Messung im Cube 6 durchführen.

6 Probenvorbereitung

Die zu wählende Probenvorbereitung ist abhängig von der Art des Lebensmittels (siehe Tabelle 5). Die Proben müssen vor der Extraktion homogenisiert vorliegen, z. B. durch Vermahlen des Probenmaterials mit einer Mühle. Hierbei ist z. B. auf einheitlich Korngrößen und auf die jeweils geltenden Vorschriften zu achten. Die angegebenen Probenmengen sollten nicht unterschritten werden, können bei Bedarf aber größer gewählt werden. Hierbei ist zu beachten, dass die Verhältnisse von Probenmaterial und Extraktionsmittel nicht geändert werden dürfen. Die Probenvorbereitung gliedert sich in folgende Schritte (siehe Abbildung 17):

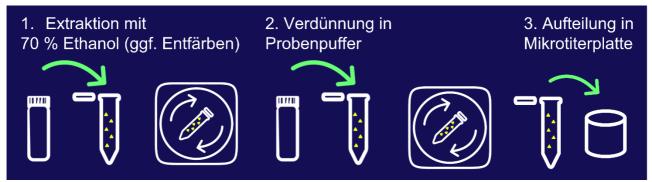


Abbildung 17. Übersicht über die Schritte der Probenvorbereitung

6.1 Puffervorbereitung

Vor dem Bearbeiten der Proben muss das Probenpufferkonzentrat 1:10 verdünnt werden:

- **15 mL** des Probenpufferkonzentrats in sauberes, verschließbares Glasgefäß füllen.
- 135 mL deionisiertes Wasser hinzufügen.
- Verdünnten Probenpuffer im Kühlschrank bei 2-8 °C lagern.
- Bis zum Ablauf des Verfallsdatums des Kits verwendbar.
- Vor Verwendung muss der Probenpuffer auf Raumtemperatur gebracht werden.

Es kann vorkommen, dass bei Lagerung des Probenpufferkonzentrats bei 2 - 8 °C ein Stoff ausfällt. Dieser löst sich vollständig beim Verdünnen. Bitte achten Sie darauf, dass der gesamte Inhalt der Flasche gelöst wird. Spülen Sie die Flasche ggf. mit dem verdünnten Probenpuffer nach.

6.2 Anleitung der Probenvorbereitung

Folgen Sie zur Probenvorbereitung dem Protokoll aus Tabelle 5 für die jeweilige Matrix. Die Probenvorbereitung ist matrixspezifisch, daher ergibt sich für mache Matrices eine leichte Anpassung des Standardprotokolls (Feste Lebensmittel mit hohem Proteingehalt). Beachten Sie die Hinweise zu besonderen Matrices in Abschnitt 9.

Tabelle 5. Protokolle der Probenvorbereitung für unterschiedliche Matrices. Abweichungen vom Standardprotokoll sind grün hervorgehoben.

Probenart	Beispiele	Probenvorbereitung	Faktor
Feste Lebensmittel mit hohem Proteingehalt	Getreide , Mais , Hülsenfrüchte	 5 g Probenmaterial einwiegen. 20 mL 70 %iges (vol/vol) Ethanol hinzugeben und die Proben für 15 min schütteln, z. B. in einem Überkopfschüttler. 5 min bei 1.000 g zentrifugieren. Überstand 1:4 in Probenpuffer verdünnen (z. B. 250 μL Probe in 750 μL Probenpuffer) und kurz schütteln. 10 min bei 12.000 g zentrifugieren. 	16
Lebensmittel mit hohem Fettgehalt	Haselnüsse, Erdnüsse, Mandeln, Pistazien, Öle	 5 g Probenmaterial einwiegen. 20 mL 70%iges (vol/vol) Ethanol hinzugeben und die Proben für 15 min schütteln, z. B. in einem Überkopfschüttler. 5 min bei 1.000 g zentrifugieren. Überstand 1:4 in Probenpuffer verdünnen (z.B. 250 μL Probe in 750 μL Probenpuffer) und kurz schütteln. 3 Spatelspitzen* SAFIA PVPP-Adsorber pro 1 mL verdünnte Probe hinzugeben und 15 min schütteln. 10 min bei 12.000 g zentrifugieren. 	16
Feste Lebensmittel mit hohem Zuckergehalt	Getrocknete Rosinen, Datteln, Feigen	 5 g Probenmaterial einwiegen. 20 mL 70%iges (vol/vol) Ethanol hinzugeben und die Proben für 15 min schütteln, z. B. in einem Überkopfschüttler. 5 min bei 1.000 g zentrifugieren. Überstand 1:4 in Probenpuffer verdünnen (z.B. 250 μL Probe in 750 μL Probenpuffer) und kurz schütteln. 10 min bei 12.000 g zentrifugieren. 	16

Probenart	Beispiele	Probenvorbereitung	Faktor
Spezialwaren	Kräuter und Gewürze (Paprika, Chili, Ingwer)	 5 g Probenmaterial einwiegen. 40 mL 70 %iges (vol/vol) Ethanol hinzugeben und die Proben für 15 min schütteln, z.B. in einem Überkopfschüttler. 5 min bei 1.000 g zentrifugieren. Überstand 1:4 in Probenpuffer verdünnen (z.B. 250 μL Probe in 750 μL Probenpuffer) und kurz schütteln. 2 Spatelspitzen* SAFIA PA-Adsorber pro 1 mL verdünnte Probe hinzugeben und 15 min schütteln. 10 min bei 12.000 g zentrifugieren. 	32
	Heu	 5 g Probenmaterial einwiegen. 40 mL 70 %iges (vol/vol) Ethanol hinzugeben und die Proben für 15 min schütteln, z. B. in einem Überkopfschüttler. 5 min bei 1.000 g zentrifugieren. Überstand 1:4 in Probenpuffer verdünnen (z. B. 250 μL Probe in 750 μL Probenpuffer) und kurz schütteln. 2 Spatelspitzen* SAFIA PA-Adsorber pro 1 mL verdünnte Probe hinzugeben und 15 min schütteln. 10 min bei 12.000 g zentrifugieren. 	32
	Cannabis	 5 g Probenmaterial einwiegen. 20 mL 70 %iges (vol/vol) Ethanol hinzugeben und die Proben für 15 min schütteln, z. B. in einem Überkopfschüttler. 5 min bei 1.000 g zentrifugieren. Überstand 1:4 in Probenpuffer verdünnen (z. B. 250 μL Probe in 750 μL Probenpuffer) und kurz schütteln. 3 Spatelspitzen* SAFIA PVPP-Adsorber pro 1 mL verdünnte Probe hinzugeben und 15 min schütteln. 10 min bei 12.000 g zentrifugieren. 	16

Probenart	Beispiele	Probenvorbereitung	Faktor
Stark geröstete Malz, Produkte Melasse		 5 g Probenmaterial einwiegen. 20 mL 70 %iges (vol/vol) Ethanol hinzugeben und die Proben für 15 min schütteln, z. B. in einem Überkopfschüttler. 5 min bei 1.000 g zentrifugieren. Überstand 1:4 in Probenpuffer verdünnen (z. B. 250 μL Probe in 750 μL Probenpuffer) und kurz schütteln. 3 Spatelspitzen* SAFIA PVPP-Adsorber pro 1 mL verdünnte Probe hinzugeben und 15 min schütteln. 10 min bei 12.000 g zentrifugieren. 	16
Produkte mit viel Chlorophyll		 5 g Probenmaterial einwiegen. 20 mL 70 %iges (vol/vol) Ethanol hinzugeben und die Proben für 15 min schütteln, z. B. in einem Überkopfschüttler. 5 min bei 1.000 g zentrifugieren. Überstand 1:4 in Probenpuffer verdünnen (z. B. 250 μL Probe in 750 μL Probenpuffer) und kurz schütteln. 2 Spatelspitzen* SAFIA PA-Adsorber pro 1 mL verdünnte Probe hinzugeben und 15 min schütteln. 10 min bei 12.000 g zentrifugieren. 	16
Produkte mit viel Anthocyanen und Polyphenolen	· ·	 5 g Probenmaterial einwiegen. 20 mL 70 %iges (vol/vol) Ethanol hinzugeben und die Proben für 15 min schütteln, z. B. in einem Überkopfschüttler. 5 min bei 1.000 g zentrifugieren. Überstand 1:4 in Probenpuffer verdünnen (z. B. 250 μL Probe in 750 μL Probenpuffer) und kurz schütteln. 3 Spatelspitzen* SAFIA PVPP-Adsorber pro 1 mL verdünnte Probe hinzugeben und 15 min schütteln. 10 min bei 12.000 g zentrifugieren. 	16

Probenart	Beispiele	Probenvorbereitung	
Flüssige Lebensmittel ohne viele Farbstoffe	Säfte, Getränke, Weißwein	 5 mL Probe abmessen. 5 mL 100 %iges (vol/vol) Ethanol hinzugeben und die Proben kurz schütteln. 5 min bei 1.000 g zentrifugieren, wenn viele Schwebstoffe vorhanden sind. Überstand 1:4 in Probenpuffer verdünnen (z.B. 250 μL Probe in 750 μL Probenpuffer) und kurz schütteln. 10 min bei 12.000 g zentrifugieren. 	
Flüssige Lebensmittel mit hoher Konzentration an roten Farbstoffen	Kirschsaft, Beerensaft, Roter Traubensaft, Rotwein	 5 mL Probe abmessen. 5 mL 100%iges (vol/vol) Ethanol hinzugeben und die Proben kurz schütteln. 5 min bei 1.000 g zentrifugieren, wenn viele Schwebstoffe vorhanden sind. 3 Spatelspitzen* SAFIA PVPP-Adsorber pro 1 mL Extrakt hinzugeben und 15 min schütteln 5 min bei 1.000 g zentrifugieren. Überstand 1:4 in Probenpuffer verdünnen (z.B. 250 μL Probe in 750 μL Probenpuffer) und kurz schütteln. 10 min bei 12.000 g zentrifugieren. 	8

^{* 2} Spatelspitzen PA bzw. 3 Spatelspitzen PVPP sind ca. 15-25 mg. Die Entfärbung wurde im Bereich zwischen 10 - 50 mg/mL PA/PVPP getestet, dabei wurden kein Einfluss bzgl. der Menge des Adsorbers auf die Analysenergebnisse festgestellt.

Weitere Protokolle für spezifische Matrizes und Anwendungen sowie Aktualisierungen bestehender Protokolle sind unter www.safia.tech verfügbar. Bitte prüfen Sie regelmäßig, ob neue Updates vorliegen.

7 Durchführung des SAFIA Assays

Abbildung 18 zeigt schematisch die einzelnen Schritte der Durchführung des SAFIA Assays.

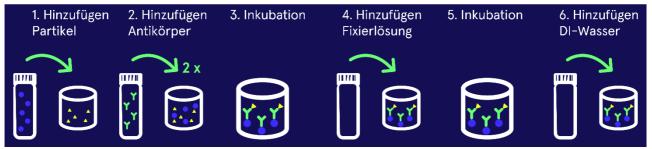


Abbildung 18. Durchführen des SAFIA Assays

7.1 Vorbereitung

- 1. Planen Sie, falls noch nicht geschehen, Ihr Plattenlayout (Zuweisung der Proben und Standards zu den Wells der Mikrotiterplatte). Dies kann mithilfe der Software SAFIA Score erfolgen (siehe <u>Abschnitt 5</u>).
- 2. Bringen Sie alle Kit-Reagenzien auf Raumtemperatur.
- 3. Schütteln Sie die Fixierlösung vor der Verwendung, da es bei Lagerung bei 2–8 °C zum Ausfallen einer Komponente kommen kann, die sich jedoch bei Raumtemperatur wieder vollständig löst.
- 4. Stellen Sie die benötigte Menge der Partikelarbeitslösung frisch her:
 - Partikelstocklösung mindestens 20 s kräftig schütteln.
 - Im Verhältnis 1:33 in Partikelpuffer verdünnen (siehe Tabelle 6).

Tabelle 6. Pipettierschema für 1, 3, 6, 9 und 12 Streifen einer MTP

	1 Streifen (8 Wells)	3 Streifen (24 Wells)	6 Streifen (48 Wells)	9 Steifen (72 Wells)	1 ganze MTP (96 Wells)
Partikelstocklösung	3,3	10 μΙ	20 μΙ	30 μΙ	45 μl (alles)
Partikelpuffer	106,7 µl	320 µl	640 µI	960 µl	1.500 µl (alles)
Gesamtvolumen	110 μΙ	330 μl	660 µl	990 µl	1.545 µl

- Verdünnung ebenfalls mind. 20 s gut schütteln

Die fertige Partikelarbeitslösung muss am Messtag aufgebraucht werden und ist nicht länger lagerfähig!

Alle anderen Reagenzien des Kits sind gebrauchsfähig.

7.2 Durchführung des Assays

1. In jedem Well der Mikrotiterplatte werden **25 μL** verdünnten Probe/ Standard vorgelegt, entsprechend dem gewählten Plattenlayout.

- 2. Dann werden hintereinander hinzugegeben:
 - 10 μL Partikelarbeitslösung, diese vor dem Einfüllen nochmals gut schütteln (mind. 20 s)
 - 25 µL Primärer Antikörper (AK 1)
 - 50 µL Sekundärer Antikörper (AK 2).
- 3. 20 min bei RT unter Schütteln inkubieren.
- 4. **50 μL** Fixierlösung hinzugeben und **5 min** inkubierten.
- 5. **140** μL DI-Wasser hinzugegeben.

Die Zugabe der Reagenzien sollte mit einer Mehrkanalpipette erfolgen. Wenn Sie eine Mehrkanalpipette mit Dispensierfunktion verwenden, können Sie folgendes Schema zum Pipettieren verwenden:

Beispiel

- Sie haben 48 Wells mit Standard/Probe befüllt, in Well A1 bis F8 (die ersten 6 Spalten) →
 Demnach haben Sie 6 Streifen mit jeweils 8 Proben
- Verwenden Sie ein Multi-Kanal-Reservoir und pipettieren Sie das für einen Streifen benötigte Volumen (siehe Tabelle 7) 6-mal nebeneinander.
- Stellen Sie die Mehrkanalpipette auf das Volumen für 1 Well (z.B. bei der Partikellösung 10 μl) und 8 Dispensier-Schritte ein
- Beladen Sie nun 6 Kanäle der Pipette mit Pipettenspitzen und nehmen mit jedem Kanal das vorbereitete Volumen aus dem Multi-Kanal-Reservoir auf.
- Dispensieren Sie nun das Volumen 8-mal in die Wells der Reihen 1-6.
- Arbeit Sie hierbei von unten nach oben (H zu A), um Fehler durch Kreuzkontamination zu minimieren.

Tabelle 7. Benötigte Volumina der Assay-Reagenzien für 1 Well bzw. einen Streifen

Reagenz	1 Well	1 Streifen
Partikellösung	10 μΙ	110 μΙ
AK 1	25 µl	350 µl
AK 2	50 μΙ	700 μΙ
Fixierlösung	50 µl	700 μΙ
DI-Wasser	140 μΙ	1.400 µl

SAFIA

- Für jedes unterschiedliche Reagenz/ jeden Standard muss unbedingt eine neue Pipettenspitze benutzt werden.
- Bei Pipettieren sollten keine langen Intervalle zwischen den einzelnen Schritten entstehen & das Pipettieren sollte kontinuierlich erfolgen, sodass keine Verzögerung zwischen den einzelnen Streifen entsteht.
- Bei der Zugabe der Reagenzien in die einzelnen Wells ist zu beachten, dass die Pipettenspitzen auf keinen Fall die Flüssigkeit berühren, wenn die gleiche Pipettenspitze für mehrere Wells verwendet wird!
- 6. Die Messung im Durchflusszytometer kann nun gestartet werden, siehe Abschnitt 7.3.

7.3 Auslesen mit dem Cyflow® Cube 6 Durchflusszytometer

- 1. Wenn Sie am Messtag noch keine Performance Check durchgeführt haben, folgen Sie zunächst den Schritten in Abschnitt 4.
- 2. Ziehen Sie den beweglichen Tray der CyFlow® Robby Autoloading Station heraus und stellen Sie die Mikrotiterplatte auf die dafür vorgesehene Plattform. Beachten Sie die richtige Orientierung der Platte. Das Well A1 muss sich oben rechts befinden.
- 3. Klicken Sie auf Work Work in der Hauptleiste.
- 4. Überprüfen Sie unter *Einstellungen* ♠ → *Measure,* ob die Parameter wie in Abbildung 19 dargestellt eingestellt sind.

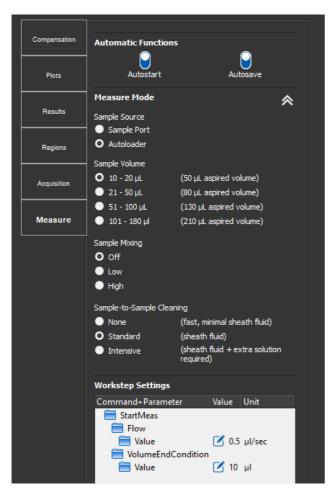


Abbildung 19. Einstellungen des Cube 6 zur Messung

5. Klicken Sie auf *Start* , um die Messung zu beginnen.

6. Nun öffnet sich ein Fenster (siehe Abbildung 20). Hier haben Sie die Möglichkeit eine *Tray-ID* (Batch-Nummer) (z.B. die Analyse-ID) zu vergeben. Verwenden Sie nur alphanumerische Zeichen (A-Z, a-z, 0-9) und den Tiefstrich "" für die Tray-ID (z.B. 20250213_TESTBATCH), da andere Zeichen & Sonderzeichen nicht erkannt werden und bei der Erstellung des Ordners gelöscht werden.

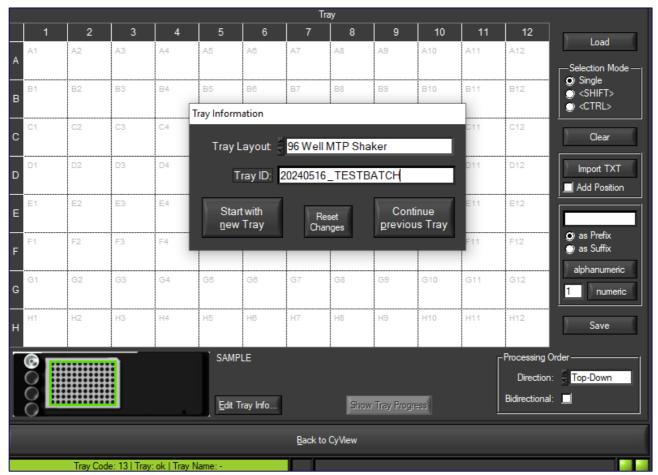


Abbildung 20. Auswahl des Plattenlayouts

7. Klicken Sie auf Start with a new Tray um einen neuen Batch zu erstellen.

- 8. Wählen Sie nun die Wells aus, die gemessen werden sollen. Dies kann einzeln geschehen oder durch Ziehen über die Felder. Ausgewählte Wells erscheinen hell-blau (siehe Abbildung 21).
- 9. Um die Daten mithilfe von SAFIA Score auswerten zu können, ist es unbedingt erforderlich, die Well-ID einzufügen. Verwenden Sie hierfür immer die Einstellung as Prefix. Drücken Sie auf den Button alphanumeric, dann erscheint die Well-ID in der entsprechenden Kavität. Die Well-ID wurde übernommen, wenn die Werte in der Mitte der Kavitäten in schwarz dargestellt wurden.
- 10. Optional kann für jede Probe ein Probenname vergeben werden. Dies wird im weißen Feld eingetragen, (siehe Abbildung 21, rot markiert). Drücken Sie den Button *alphanumeric*, damit der Probename übernommen wird und in der entsprechenden Kavität in schwarzer Schrift erscheint.

Abbildung 21. Das Menü für die Mikrotiterplattenbelegung

- 11. Klicken Sie nun auf den Button *Back to CyView*. Dadurch gelangen Sie zu *CyView* und die Messung kann über *Fortfahren* pestartet werden.
- 12. Achten Sie vor und während der Messung darauf, dass ausreichend *Sheath Fluid* vorhanden ist. Füllen Sie die Flasche nach, wenn eine Warnung erscheint.
- 13. Die Messung erfolgt nun vollautomatisch. Sie sollten dennoch die ersten 5 Messungen überwachen, ob z. B. im System befindliche Luftblasen die Messungen beeinflussen.

Bei einer erfolgreichen Messung sehen Sie im Streuplot FSC/SSC eine Population, die im Gate Partikel auftaucht. Ebenso bilden sich bis zu 7 Populationen im Streuplot FSC/FL-3, siehe Abbildung 22. Diese müssen für die Messung nicht in den richtigen Gates liegen, dies wird ggf. später in der Auswertung korrigiert. Je nach verwendetem Kit sind in diesem Plot unterschiedliche Populationen, die für die unterschiedlichen Mykotoxine stehen, zu erkennen.

Abbildung 22. Typische Ansicht bei der Messung eines SAFIA Assays. Oben: Histogramm für die Intensität im FL-1 eines Analyten. Unten: Streuplot FSC/SSC und Streuplot FSC/FL-3

14. Optional nach der Messung: Führen Sie einen manuellen Reinigungszyklus durch, siehe Abschnitt 10.1.

15. Nach vollendeter Messung öffnet sich automatisch *FCS Express* und zeigt die gemessenen Daten. Wenn nicht automatisch die richtigen Daten geladen werden, befolgen Sie die Hinweise in Abschnitt 10.2.

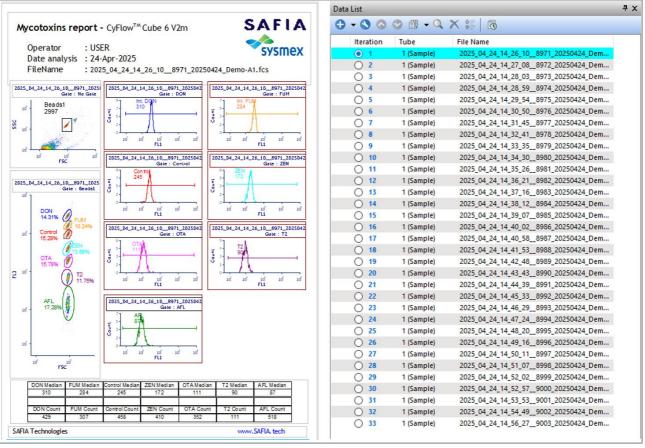


Abbildung 23. Darstellung der .fcs-Daten in FCS Express

- 16. In der Data List auf der rechten Seite sehen Sie, dass die erste Messung ausgewählt ist. Die Daten dieser Messung sind auf der linken Seite dargestellt. Überprüfen Sie, ob die Populationen in den Gates liegen. Liegt eine Population nicht im Gate, muss sie angepasst werden. Dazu kann das entsprechende Gate angeklickt und verschoben oder vergrößert/verkleinert werden.
- 17. Um diese Überprüfung für alle Messungen durchzuführen und die Daten zu konvertieren, klicken Sie im Reiter Batch & Export auf Run. Achten Sie vor dem Start darauf, dass die erste .fcs-Datei ausgewählt ist (blauer Punkt), da die Iteration des Batch-Exports stets von der ausgewählten Datei ausgeht.

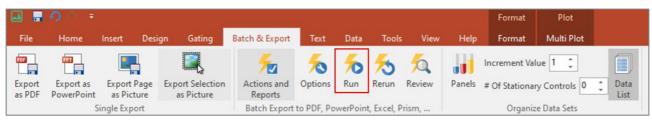


Abbildung 24. Ansicht des Reiters Batch & Export in FCS Express sowie Lage von Run

18. Überprüfen Sie nun die Gates der zweiten Messung und klicken Sie in dem geöffneten Fenster (siehe Abbildung 25) auf *Continue*, um zur nächsten Messung zu gelangen. Wenn *Keep the changes* ausgewählt ist, übertragen sich die Anpassungen auf alle Messungen. Wenn eine Anpassung nicht auf alle Messungen übertragen werden soll, wählen Sie *Restore the state of the layout before the next iteration* aus. Mit *Run*

to End kann zur letzten Messung gesprungen werden, wobei die gegebenen Gates auf alle Messungen angewendet werden und die Konvertierung durchgeführt wird.

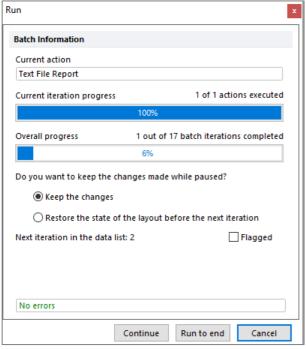


Abbildung 25. Iteration der Messungen zur Konvertierung der .fcs-Dateien zu .csv-Dateien

- 19. Wenn alle Messungen überprüft wurden, schließt sich das Fenster und es wurde automatisch eine .csv-Datei mit den gesammelten Messungen erstellt.
- 20. Schließen Sie FSC Express ohne zu speichern und fahren mit der Auswertung in SAFIA Score fort.
 - Speichern Sie nicht das Layout, da Sie sonst die Vorlage überschreiben. Wenn Sie das individuelle Layout speichern möchten, wählen Sie dazu die Option *Speichern Unter*.

Dass die Partikelpopulationen nicht immer vollständig im Gate liegen, ist vollkommen normal, da die Messung täglichen Schwankungen unterworfen ist und sich chargenabhängig leicht ändern kann.

Beachten Sie, dass die Reihenfolge der Gates sowie die Namen der Gates und Regionen nicht umbenannt werden dürfen. Eine Vertauschung von Gates führt zur falschen Dekodierung der Partikel und damit zu einer falschen Auswertung! Bei Fragen hierzu, wenden Sie sich bitte an den SAFIA Technologies Support.

Bei Bedarf können die Plots über Zoom vergrößert werden.

7.4 Auswertung des Assays mithilfe von SAFIA Score

- 1. Wenn Sie in SAFIA Score Ihren Assay noch nicht geplant haben, folgend Sie den Anweisungen in Abschnitt 5.
- 2. Wählen Sie im Arbeitsbereich *Plate Layout Cube6 V2m FCS Express* aus, klicken Sie anschließend auf *Import File* und wählen die zuvor generierten .csv-Dateien aus (siehe Abbildung 26).

Abbildung 26. Ausschnitt des Arbeitsbereichs Plate Layout

3. Klicken Sie anschließend auf den Button *Calculate*. Anhand des Plate Layouts und der Messdaten der Kalibrationsstandards werden nun sigmoide Kalibrationskurven erstellt. Auf deren Grundlage erfolgt die automatische Berechnung der Gehalte in den Proben und Referenzproben (siehe Abbildung 27).

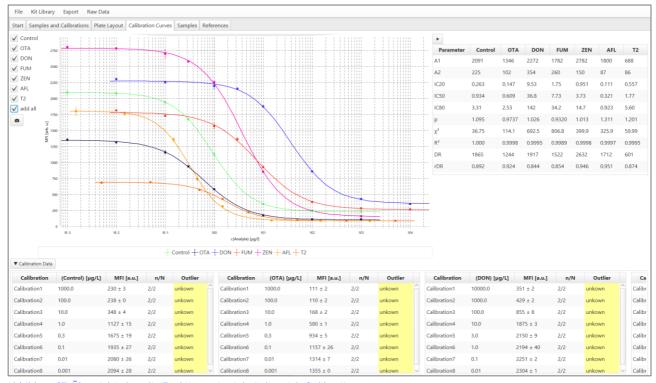


Abbildung 27. Übersicht über die Funktionen im Arbeitsbereich Calibration

- 4. Rechts oben werden die durch den Fit berechneten Kurvenparameter angezeigt. Anhand dieser können Sie beurteilen, ob die Kalibration des Assays erfolgreich war. Eine gültige Kalibrationskurve sollte folgende Parameter aufweisen:
 - relative Dynamic Range (rDR): mindestens 0.70, optimal > 0.80
 - Bestimmtheitsmaß (R²): mindestens 0.990
 - Steigungsparameter der Kurve am Testmittelpunkt (p): etwa 0.5-2.0, optimal um 1

-	IC-Parameter	Control	ОТА	DON	FUM	ZEN	AFL	T2
	IC50 Min [µg/L]	0.250	0.180	4.35	3.00	1.10	0.0650	0.360
	IC50 Max [µg/L]	2.40	1.28	90.0	26.0	7.00	0.600	9.20

Erfüllt eine Kurve nicht die Richtwerte dieser Parameter, beachten Sie die Hinweise in Abschnitt 10.7.

Unten im Tab sehen Sie tabellarisch die Ergebnisse der einzelnen Standards zusammengefasst, geordnet nach Analyten.

Die Berechnung der Kalibrationskurve erfolgt auf Basis der Mittelwerte der Fluoreszenzintensität (MFI, in a. u.) der Replikatmessung jedes Standards.

Diese und die entsprechende Standardabweichung werden in der Tabelle dargestellt. Wenn mindestens 3 Replikate gemessen wurden, wird automatisch ein Ausreißertest nach Grubbs (Signifikanzlevel a = 0.95) durchgeführt, der mögliche Ausreißermessungen anzeigt. Durch Doppelklick auf die einzelnen Zeilen der Tabelle öffnet sich eine Detailansicht (siehe Abbildung 28). Mithilfe der Buttons *Exclude Measurement* und *Exclude All Outliers* lassen sich Messungen entweder einzeln oder auf Basis des Grubbs-Tests ausschließen. Dies wird in der Berechnung berücksichtigt und gespeichert. Über Include Measurement können vorher ausgeschlossene Messungen wieder einbezogen werden. Zum Anwenden klicken Sie auf *Apply*, zum Verwerfen auf *Close*.

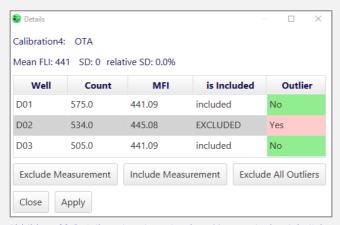


Abbildung 28. Detailanzeige einer einzelnen Messung in den Arbeitsbereichen *Calibration Curves* und *Results*. Diese kann durch Doppelklick auf einen Tabelleneintrag geöffnet werden. Über die Buttons können Messungen in die Berechnung ein- oder ausgeschlossen werden. Im Feld *Outlier* sehen Sie die Ergebnisse des Ausreißertests nach Grubbs

Beachten Sie, dass der Grubbs-Test lediglich als Unterstützung zum Auffinden von extremen Messausreißern gedacht ist und gerade bei kleinem Stichprobenumfang unzuverlässige Aussagen generieren kann. Z. B., wenn bei drei Replikatmessungen 2 der Werte vollständig übereinstimmen, sollten der als "Ausreißer" gekennzeichnete Dritte Wert nicht ausgeschlossen werden.

Im Arbeitsbereich *Calibration Curves* haben Sie links oben die Möglichkeit sich die verschiedenen Kalibrationskurven anzeigen zu lassen und diese über die Screenshot-Funktion als Grafik zu exportieren.

- 5. In den Arbeitsbereichen *Results* und *References* sind die Ergebnisse der einzelnen Proben bzw. Referenzproben aufgelistet (siehe Abbildung 29).
- 6. Über den Button Show Outlier bzw. Show Interpretations können Sie zwischen der Interpretationsansicht bzw. der Ausreißer-Ansicht hin und her schalten. Die Ausreißer-Ansicht ist analog zur Ausreißer-Ansicht der Calibration Curves gestaltet und zeigt Ihnen die Ergebnisse einen Grubbs-Ausreißer-Tests an.

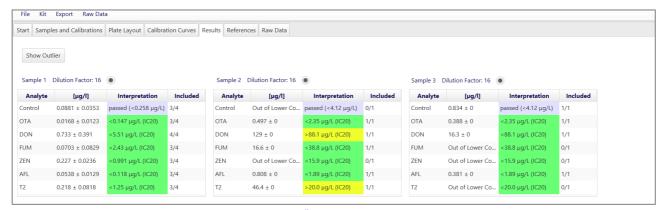


Abbildung 29 Ausschnitt des Arbeitsbereichs *Results* mit einer Übersicht der Ergebnisse der einzelnen Proben. Dies ist identisch zu Ansicht im Arbeitsbereich *References*

Die Interpretationsansicht gibt Ihnen eine optische Hilfestellung, ob die Kontrollmessung bestanden wurde (Anzeige: passed/failed) bzw. ob der gemessene Wert für ein Toxin über oder unter dem IC-20-Wert liegt. Der IC-20 Wert kann für eine nicht validierte Matrix als ungefähre Bestimmungsgrenze angesehen werden. Bitte beachten Sie, dass es sich hierbei nur um eine Interpretationshilfe handelt. Die Interpretation ob ein Mykotoxin über oder unter der Nachweis- bzw. Bestimmungsgrenze liegt, ist abhängig von der getesteten Matrix und muss von Ihnen anhand der Kit-Daten oder eigener Validierungsdaten für nicht aufgelistete Matrices erfolgen.

Per Klick kann der Verdünnungsfaktor für die Berechnung ein- oder ausgeschlossen werden.

Analog zu den Tabellen im Arbeitsbereich *Calibration Curves* gelangen Sie durch Doppelklick auf eine Detailansicht. Hier können einzelne Messungen in die Berechnung ein- oder ausgeschlossen werden. Ist die gemessene MFI größer als der A1-Wert der Kalibrationskurve, wird der Wert als *Out of Lower Concentration Range* angezeigt, da für diesen Fall eine Quantifizierung der Proben mathematisch nicht möglich ist. Dies bedeutet, dass die Konzentration des Analyten kleiner als die Bestimmungsgrenze des Assays war. Die Werte werden in der Berechnung automatisch ausgeschlossen. Analoges gilt für Werte, die kleiner sind als der A2-Wert der Kalibrationskurve. Ein Unterschreiten des A2-Wertes bedeutet, dass die Konzentration des Analyten sehr hoch ist. Ergebnisse in diesem Bereich sollten besonders kritisch hinterfragt werden; die Wahrscheinlichkeit eines Messfehlers ist hoch. Ziehen Sie zur Interpretation auch die Control-Messung heran und messen Sie die Probe ggf. erneut nach starker Verdünnung.

Über den Button Screenshot Results Tables können Sie die Tabellen als Grafik exportieren.

Im unteren Bereich werden die ermittelten Konzentrationen in Form eines Säulendiagramms angezeigt, geordnet nach Analyten. Das Diagramm kann ebenfalls über den Button *Screenshot Results Graphs* exportiert werden. Zusätzlich besteht die Möglichkeit den Verdünnungsfaktor in jeder Grafik einzubeziehen, sowie Referenzlinien anzuzeigen.

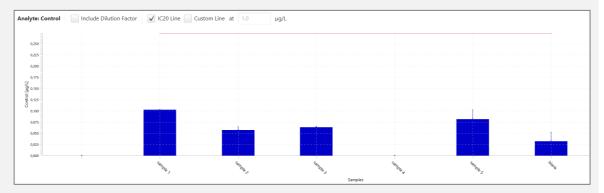


Abbildung 30 Ausschnitt des Arbeitsbereichs *Results* mit den Ergebnissen der einzelnen Proben als Säulendiagramm. Dies ist identisch zu Ansicht im Arbeitsbereich *References*

Beim Analyten Control handelt es sich um die Kontrollmessung. Die Kontrolle zeigt an, ob es sich um ein falsch positives Ergebnis einer Messung handeln könnte. Die Kontrolle gilt als bestanden, wenn der ermittelte Wert einer Probe kleiner als der IC20-Wert der zugehörigen Control-Kalibrationskurve ist. Dies kann leicht grafisch überprüft werden. Dazu muss das Feld *Include Dilution Factor* deaktiviert und das Feld Set IC20 Reference Line aktiviert sein (siehe Abbildung 30).

7. Im Menü Raw Data kann eine Tabelle der eingelesenen Messdaten angezeigt werden.

Dies kann bei der Bewertung einzelner Messungen hilfreich sein. Wenn bspw. keine oder nur sehr wenige Partikel erfasst wurden, lässt sich dies an der Spalte *Count* erkennen. Der Arbeitsbereich *Raw Data* ist nur aktiv, wenn im Menü *Raw Data* die Option *Show Raw Data* aktiviert wurde. Dieser Arbeitsbereich kann bei Bedarf auch wieder geschlossen werden.

8. Weiterhin können die berechneten Werte in eine Microsoft® Excel® Datei (.xlsx) exportiert werden. Klicken Sie hierzu im Menü *Export* auf *Excel-Export* und speichern Sie die Datei ab. In der Microsoft® Excel® Datei finden Sie in den entsprechenden Blättern die zusammengefasten Ergebnisse der Messungen der Proben und Referenzproben, sowie die Parameter der einzelnen Kalibrationskurven.

8 Reinigen und Herunterfahren des Cube 6

Um eine einwandfreie Funktion des Cube 6 zu gewährleisten, empfehlen wir folgende Reinigung des Zytometers nach Abschluss der SAFIA Messungen durchzuführen. Dies ist nur im MTP-Format möglich. Für das Tube Format kann einfach die *Intermediate Cleaning Funktion* verwendet werden.

- Füllen Sie nacheinander jeweils einen Streifen (8 Kavitäten Reihe A→ H) einer Mikrotiterplatte, jeweils mit 4 Wells Hypochlorite Solution (1. Spalte A→D), 4 Wells Decontamination Solution (1. Spalte E→H), 4 Wells Cleaning Solution (2. Spalte A→D) und 4 Wells Sheath Fluid (2. Spalte E→H).
- 2. Ziehen sie den beweglichen Tray der CyFlow® Robby Autoloading Station heraus und stellen Sie die Mikrotiterplatte auf die dafür vorgesehene Plattform. Bitte beachten Sie, die richtige Orientierung der Platte (Well A1 oben rechts).
- 3. Öffnen Sie das Configuration File mit Namen Cleaning-MTP. Klicken Sie dazu auf den Button CFG 💼 .
- 4. Klicken Sie nun auf *Work* Work in der Hauptleiste.
- 5. Überprüfen Sie, ob folgende Einstellungen unter *Einstellungen*

 → *Measure* eingestellt sind (siehe Abbildung 31).

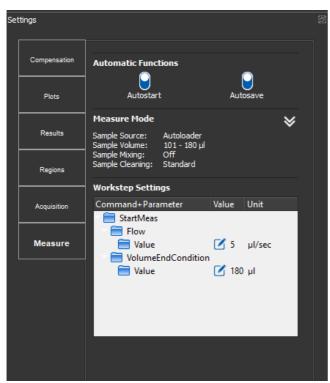
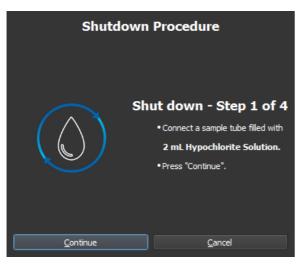
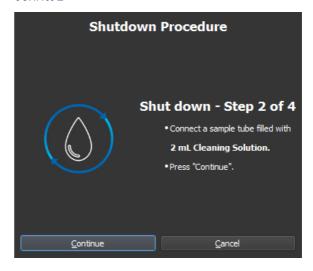
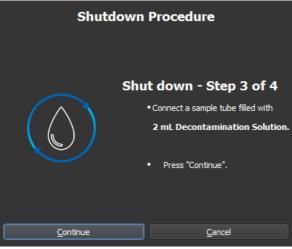


Abbildung 31. Einstellungen zum Ausführen des SAFIA Reinigungsprogramms (Cleaning-MTP)


6. Führen Sie die Messung analog zum Abschnitt 7.3 aus.


Die aus dem Reinigungsprogramm entstandenen .fcs-Dateien enthalten keine sinnvollen Daten, werden aber dennoch im Ordner C:\Users\Public\Documents\Cyflow automatisch gespeichert. Zur besseren Übersicht können Sie diese Dateien löschen.

- 7. Führen Sie nun den Shutdown durch, indem Sie den *Shutdown* Shutdown klicken.
- 8. Starten Sie das Programm, indem Sie auf Start klicken.
- 9. Folgen Sie den Anweisungen durch das Shutdown-Programm, siehe Abbildung 32. Nach Abschluss des Geräts schließt sich die CyView™ Software automatisch.


Schritt 1

Schritt 2

Schritt 3

Schritt 4

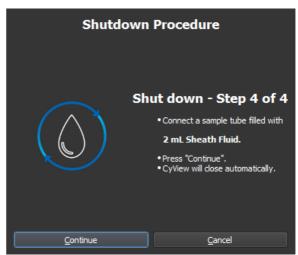


Abbildung 32. Schritte des Prime Programms Die Software schaltet sich automatisch ab, sobald der Vorgang abgeschlossen ist. Sie können den PC nun herunterfahren

9 Hinweise für besondere Matrices

Matrix	Hinweis
Soja	Bei hohen Anteilen von Soja werden zu hohe OTA-Werte erhalten. Abhilfe: Soja-Produkte sollten etwas stärker verdünnt werden.
Zimt	Zimt kann mit SAFIA nicht analysiert werden.
Kaffee	Kaffee kann mit SAFIA nicht analysiert werden.
Mango	Bei einem Mango-Fruchtanteil ab ca. 30 % kann es zu einem Fehler der internen Kontrolle kommen. Die interne Kontrolle kann für mangohaltige Proben nicht verwendet werden. Die Ergebnisse der Mykotoxine sind davon nicht betroffen.

10 Häufige Fehler und Trouble Shooting

10.1 Manueller Reinigungszyklus

Führen Sie nach Abschluss einer Messung einen Reinigungszyklus durch, damit Rückstände aus dem Durchflusszytometer vollständig entfernt werden und es zu keinen Verschleppungen kommt. Durch diese Praxis wird die Langlebigkeit Ihres Gerätes unterstützt.

- Beachten Sie, dass sofort Flüssigkeit aufgesogen wird, sobald der rote Intermediate Cleaning Button betätigt wird. Platzieren Sie also das Röhrchen mit der entsprechenden Lösung in dem Sample Port bevor Sie auf den Button klicken.
- 1. Befüllen Sie dazu ein Röhrchen mit ca. 2 ml Cleaning Solution und verbinden Sie es mit dem Sample Port.
- 3. Befüllen Sie ein Röhrchen mit ca. 2 ml Sheath Fluid und verbinden Sie es mit dem Sample Port.
- 4. Klicken Sie erneut auf den Intermediate Cleaning Button

10.2 Beim Performance Check oder bei Messung werden keine Partikel gemessen

Falls keine Partikel detektiert werden, brechen Sie die Messung über den Button *Stopp* ab. Starten Sie einen Reinigungszyklus über den *Clean* Button (siehe <u>Abschnitt 10.1</u>) oder führen Sie erneute des Prime-Programms durch (siehe <u>Abschnitt 3</u>).

10.3 Partikelpopulationen liegen nicht in Gates

Die Partikelpopulationen erscheinen "langgestreckt" und nicht im Gate (Daten sehen "merkwürdig" aus): Das kann der Fall sein, wenn eine Luftblase in der Messküvette festhängt oder es ein Problem mit Gerät gibt. In solchen Fällen sollte zunächst ein Cleaning-Zyklus durchgeführt und anschließend das Prime-Programm erneut gestartet werden. Bleibt das Problem bestehen, ist der Sysmex-Kundenservice zu kontaktieren.

Die *Gain Settings* und *Tresholds* der Detektoren wurden bereits bei der Installation des Systems eingestellt und dürfen nicht verändert werden!

10.4 Nach Abschluss der Messung öffnet sich FCS Express nicht automatisch mit den richtigen Daten

Wenn sich *FCS Express* nach Ihrer Messung nicht automatisch mit den Daten öffnet, können Sie diese manuell importieren. Um diesen Fehler in Zukunft zu verhindern, achten Sie darauf, dass *FCS Express* vor dem Starten der Messung in CyView geschlossen ist.

1. Öffnen Sie FCS Express und klicken auf Open Layout.

Abbildung 33. Ansicht der Startseite von FCS Express

- 2. Wählen Sie das Layout mit dem Namen Calc_Mycotoxins-SCR_A aus, dies befindet sich in C:\ProgramData\PartecGmbH\Cube_18\templates\Quality Control
 - Wenn Sie bereits Messungen vorgenommen haben, erscheinen unterhalb von *Open Layout* die zuletzt verwendeten Layouts, von denen Sie das auswählen können.
- 3. Es öffnet sich ein Fenster mit dem leeren Layout links und der leeren *Data List* rechts. Per *Drag and Drop* könne Sie hier Ihre .fcs-Dateien ablegen. Ihre Dateien befinden sich in C:\ProgramData\PartecGmbH\Cube_18\data\cyflow\ in einem Ordner mit dem Namen der von Ihnen vergebenen Tray-ID
- 4. Folgen Sie nun den Anweisungen in <u>Abschnitt 7.3</u>. Erscheint eine Fehlermeldung sobald Sie auf *Run* klicken, folgen Sie den folgenden Anweisungen in <u>Abschnitt 10.5</u>).

10.5 FCS Express Fehlermeldung

1. Öffnet sich die Fehlermeldung (siehe Abbildung 34), wenn Sie auf *Run* klicken, dann klicken Sie *Cancel* und führen die folgenden Schritte durch.

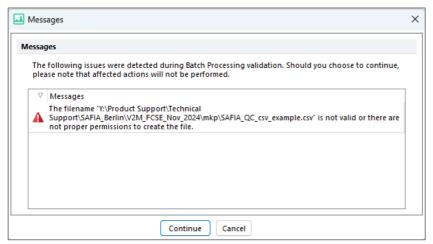


Abbildung 34. Ansicht der Fehlermeldung in FCS Express, wenn das Konvertieren der .fcs- in eine .csv-Datei fehlschlägt

2. Klicken Sie unter Batch & Export auf Actions and Reports.

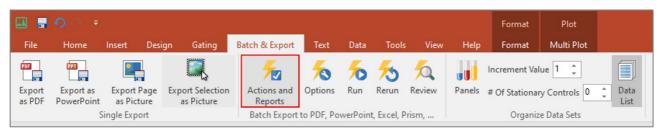


Abbildung 35. Ansicht des Reiters Batch & Export in FCS Express sowie Lage von Actions and Reports

3. Daraufhin öffnet sich dieses Fenster:

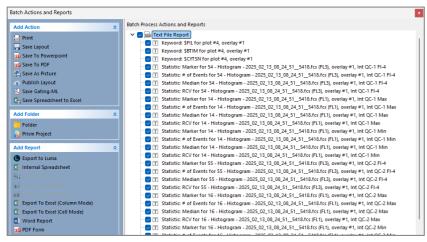


Abbildung 36. Ansicht des Fensters Batch Actions and Reports

- Klicken Sie mit einem Doppelklick auf Text File Report.
- 5. Daraufhin öffnet sich ein neues Fenster in dem Reiter File Options:

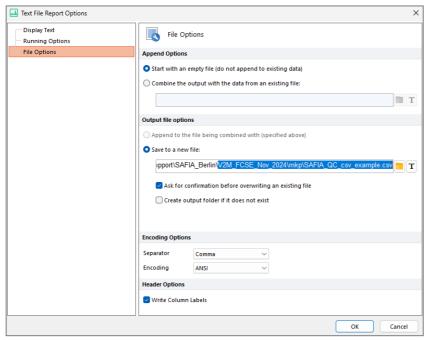


Abbildung 37. Ansicht des Fensters Text File Report Options

- 6. Überprüfen Sie, ob unter Append Options die Option Start with an empty file [] ausgewählt ist und bei Encoding Options Comma und ANSI ausgewählt sind.
- 7. Wählen Sie unter Output file Options bei Save to a new file den Speicherort aus, indem Sie auf das Ordner-Symbol klicken. Der Speicherort ist in Ordner SAFIA Check bzw. SAFIA Mykotoxins → Exportfiles. Geben Sie hier den Dateinamen ein.
- 8. Klicken Sie nun auf das T (rechts neben dem Ordner-Symbol), daraufhin öffnet sich das Fenster *Insert a Token*:

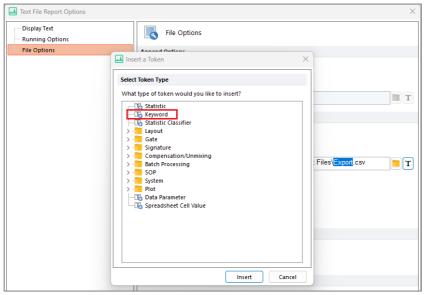


Abbildung 38. Ansicht des Fensters Insert a Token

9. Wählen Sie mit einem Doppelklick *Keyword* aus, darauf hin öffnet sich das Fenster *Create Keyword*. Wählen Sie den Reiter *Keyword* aus und klicken Sie auf die drei Punkte.

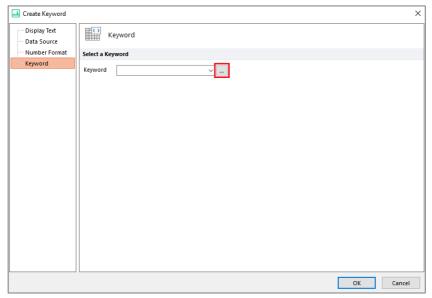


Abbildung 39. Ansicht des Fensters Create Keyword

10. Nun öffnet sich das Fenster *Keyword List*. Wählen Sie das Keyword \$FIL aus und bestätigen über OK. Nun kann das Fenster Batch Actions and Reports geschlossen werden.

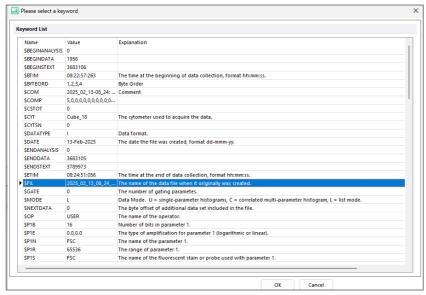


Abbildung 40. Ansicht des Fensters Please select a keyword

11. Klicken Sie auf *Run* und folgen den Schritten in <u>Abschnitt 7.3</u>. Speichern Sie das Layout über File speichern unter mit dem Namen Calc_Mycotoxins-SCR_A.

10.6 Die Kontrolle ist Positiv

Wenn die Kontrolle positiv ist, stört eine Substanz in der Matrix den Assay. Die restlichen Ergebnisse sind daher ggf. nicht korrekt. Führen Sie zur Abhilfe einen Aufreinigungsschritt mit PA- oder PVPP-Adsorber durch, um die störenden Substanzen zu entfernen, siehe <u>Abschnitt 6</u>. Beachten Sie außerdem die Hinweise für besondere Matrices.

10.7 Die Kalibrationskurve erfüllt nicht die Richtwerte

10.7.1 Relativer dynamischer Bereich, IC50, p-Werte

Ist die Kalibrationskurve zu flach, so ergibt der relative dynamische Bereich und/oder weitere Parameter der Kalibrationskurve wie die IC50 Werte und der Steigungsparameter der Kurve am Testmittelpunkt (p) nicht den Richtwerten (siehe Abschnitt 7.4). Die Proben können nicht korrekt quantifiziert werden. Prüfen Sie das Mindesthaltbarkeitsdatum des Kit und achten Sie immer auf die korrekte Lagerung des Kits (siehe Abschnitt 2.3). Wiederholen Sie die Messung mit einem neuen Kit, welches noch innerhalb des Haltbarkeitszeitraums liegt. Wenden Sie sich an den SAFIA Technologies Support, wenn bei einem Kit innerhalb des Haltbarkeitszeitraums die Kurven nicht die Richtwerte erfüllen.

10.7.2 R Square < 0.990

Ist das Bestimmtheitsmaß (R²/ R Square) kleiner als 0,990, überprüfen Sie die einzelnen Messwerte der Kalibrationskurve in SAFIA Score. Wenn mindestens 3 Replikate gemessen wurden, wird automatisch ein Ausreißertest nach Grubbs (Signifikanzlevel a = 0,95) durchgeführt, der mögliche Ausreißermessungen anzeigt. Wenn weniger als 3 Replikate gemessen wurden, können Sie augenscheinliche Ausreißer über die Abbildung der Kurve erkennen oder über eine große Standardabweichung (bei Duplikaten). Ausreißer können einfach ausgeschlossen werden (siehe Abbildung 28), wodurch das Bestimmtheitsmaß steigt. Achten Sie beim Pipettieren der Kalibrationsstandards auf sauberes Pipettieren, damit das Bestimmtheitsmaß größer 0,990 ist.

10.8 SAFIA Score

Sollten Sie nach dem Laden Ihrer Daten in SAFIA Score keine Ergebnisse bekommen, kann dies verschiedene Ursachen haben. Folgendes sind häufige Fehler:

- Sie haben bei einem Referenzmaterial für ein oder mehrere Mykotoxine keine Werte eingetragen → Tragen Sie die Ihnen bekannten Werte ein und bei unbekannten Konzentrationen 0.0.
- Das Plattenlayout in SAFIA Score stimmt nicht mit dem tatsächlichen Layout Ihrer Messplatte überein →
 Passen Sie das Layout in SAFIA Score an ihr tatsächliches Layout an und laden Sie Ihre Messdaten erneut
 hoch.

Wenden Sie sich an den SAFIA Technologies Support, wenn Sie Ihren Fehler nicht beheben können.

11 Anhang

11.1 Checkliste

Ausstattung	Spezifikation	Beispiel	
Fläche			
Arbeitsplatz	ca. 2 x 1 Meter		
Geräte			
Zentrifuge 15/50 mL: 1,000 g 2 mL: 12,000 g			
(Mikrotiter-)Plattenschüttler/ Orbitalschüttler		Titramax 101	
Rotator/ Überkopfschüttler		uniLOOPMIX 2	
Analysewaage		Ohaus Pioneer PC	
Mühle zum Mahlen von Probenmaterial		Analysenmühle A11 basic (IKA)	
Single channel Pipette	10-100 µL	Research plus, 10-100 μL (Eppendorf)	
	100-1000 μL	Research plus, 100-1000 µL (Eppendorf)	
	1000-10000 μL	Research plus, 1000-10000 µL (Eppendorf)	
8-Kanalpipette, manuell		Research plus, 10-100 μL (Eppendorf)	
alternativ zur manuellen Pipette / optimal			
8-Kanalpipette mit Dispensierfunktion	5-100 µL	Xplorer 8-Kanal-Pipette 5-100 μL (Eppendorf)	
optional			
8-Kanalpipette mit Dispensierfunktion	15-300 µL	Xplorer 8-Kanal-Pipette 15-300 μL (Eppendorf)	
	50-1200 μL	Xplorer 8-Kanal-Pipette 50-1200 µL (Eppendorf)	

Ständer für Zentrifugenröhrchen	für 50 mL, 15 mL und 2 mL Röhrchen	
PC-Bildschirm		
Cuttermesser		
Tischmüllständer		
Wannen für Mehrkanal	1er Kammer	
	8 bzw 12 er Kammer	Reagenzreservoirs Trifill Mehrkanal (Carl ROTH)
Messzylinder	150 mL, 500 mL	
Laborflasche	250 mL, 500 mL	
Verbauchsmaterial		
Pipettenspitzen für die jeweiligen Pipetten		
Zentrifugenröhrchen	2 mL	
	15 mL	
	50 mL	
96-Well-Platte, flachboden		
Tischmülltüten		

11.2 Glossar

Begriff	Erläuterung		
\$FIL	FCS-Key, gibt den Dateinamen (Fortlaufende Run-Nummer und Datum der Messung) wieder.		
\$WELLID	FCS-Key, gibt die alphanumerische Bezeichnung eines Mikrotiterplatten-Wells wieder.		
. csv-Datei	Von der FCS Express Software exportierte Datei, die in SAFIA Score importiert werden kann. Es handelt sich um eine Datei im ASCII Format. CSV steht für Comma-separated values (Durch Komma getrennte Werte		
. fcs-Datei	Ein Datenformat aus der Durchflusszytometrie. FCS steht für Flow Cytometry Standard (File). Eine .fcs-Datei ist eine von der Cyflow® Software erzeugte Messrohdatendatei. Sie ist standardisiert und kann z.B. in FCS Express geladen werden um sie in eine .csv -Datei zu konvertieren.		
. sdf-Datei	SAFIA Data File. Dies ist die Speicherdatei für sämtliche Informationen, die in SAFIA Score erzeugt werden, z.B. Plate Layouts, Kalibrationen und Ergebnisse aus Messungen. Sie kann in SAFIA Score geöffnet werden.		
Analysis-ID	Eine durch den Anwendenden zu vergebende eineindeutige Analysennummer. Sie sollte für jede gemessene Mikrotiterplatte einmal vergeben werden.		
Ausreißertest nach Grubbs	Ein statistischer Test, der dazu verwendet wird, Ausreißer in eine gegebenen Stichprobe zu entdecken, zu eliminieren und durch Iteration die verbleibende Stichprobe zu verbessern. Er ist in SAF Score für die Kalibration und die Ergebnisse implementiert.		
Batch	Ein Batch bezeichnet die gesammelten Messungen einer Platte eines Messdurchlaufes. Jede Messung gehört zu einem Batch.		
Clean-Programm	Reinigungszyklus des Cube 6		
Configuration file	Eine Datei die bestimmte Einstellungen für das Auslesen des Ass mit dem Cyflow® Cube 6 Durchflusszytometer beinhaltet.		
Dilution (Factor)	Verdünnungsfaktor einer Probe. Der Standardverdünnungsfaktor in SAFIA Mykotoxin (Getreide) Kit beträgt 16.		
FCS Express Layout	Vorlage zur Konvertierung von .fcs Dateien in .csv-Dateien mittels FCS Express .		

FL-1	Fluoreszenzdetektor 1 Detektionskanal für Fluoreszenz der sekundären Antikörper im SAFIA		
FL-3	Fluoreszenzdetektor 3 Detektionskanal für Fluoreszenz der Partikelcodierung im SAFIA		
FSC	Forward Scatter. Detektor zur Messung des gestreuten Lichts i kleinen Winkel. FSC und SSC werden verwendet, um SAFIA Partik von übrigen Partikeln in der Probe zu unterscheiden.		
FSC-Key	Ein Schlagwort, dass dem Textteil einer .fcs-Datei entnommen werden kann und bspw. Informationen zu einer Messung enthält.		
Gate	Sortierfenster in der Durchflusszytometrie. Wird verwendet, um relevante Daten von nicht-relevanten Daten zu trennen, bspw. SAFIA-Partikel von sonstigen Partikeln. Nur Partikel, die sich in einem Gate befinden, werden in nachfolgenden Berechnungen eingeschlossen.		
IC20-Wert	Der IC20-Wert gibt die Konzentration eines Analyten an, die im SAFIA für eine 20 %ige Verringerung des maximalen Signals (A1) sorgt. Sie kann als Orientierungswert für die Bestimmungsgrenze verwendet werden. Im SAFIA dient der IC20-Wert der Control-Messung als Kriterium einer falsch-positiven Probe.		
MFI [a. u.]	Median Fluoreszenzintensität in willkürlichen Einheiten. Fluoreszenzintensität berechnet aus einem Histogramm, z.B. für den FL-1 Detektor.		
Plate Layout	Zuordnung der alphanumerisch kodierten Wells (A1 bis H12) einer 96-Well Mikrotiterplatte zu einer Probe oder einem Standard.		
Prime-Programm	Spülprogramm, das den Cube 6 in den Betriebszustand versetzt.		
R Square (R²)	Bestimmtheitsmaß		
Recovery rate	Wiederfindungsrate. Prozentuales Verhältnis vom Soll-Wert einer Referenzprobe zum ermittelten Ist-Wert.		
Relative Dynamic range (rDR)	Die Relative Dynamic Range ist ein Maß für das Signal-zu-Rausch-Verhältnis eines Immunoassay. Sie wird berechnet als Quotient der Differenz von oberer und unterer Asymptote (A1 und A2) und der unteren Asymptote (A2) einer Kalibrationskurve Ein Relative Dynamic Range von 0,80 entsprecht einem Signal-zu-Rausch-Verhältnis von 5.		
Replicates	Wiederholungsmessung		
Sample ID	Eineindeutige Probenbezeichnung		
· · · · · · · · · · · · · · · · · · ·	·		

SAFIA

Sheath Fluid	Flüssigkeit, die zum Betrieb eines Durchflusszytometers (hydrodynamischen Fokussierung) verwendet wird.
SSC	Side Scatter. Detektor zur Messung des gestreuten Lichts im 90° Winkel. FSC und SSC werden verwendet, um SAFIA Partikel von übrigen Partikeln in der Probe zu unterscheiden.
MTP-Format	Mikrotiterplatten-Format. Die Auslesung erfolgt in einer 96-Well Platte über die CyFlow® Robby Autoloading Station.

12 Kontakt

SAFIA Technologies

Bundesanstalt für Materialforschung und –prüfung (BAM) Richard-Willstätter-Straße 11 12489 Berlin

T: +49 (0) 0162 7323405

M: info@safia.tech

SAFIA Technologies Support

T: +49 (0) 1556 3234634

M: support@safia.tech

Sysmex Support

T: +49 (0) 2534 8008 111

M: support@sysmex-partec.com